a The current issue and full text archive of this journal is available at
Y http://www.emeraldinsight.com/0961-5539.htm

HFF
12,5

560

Received September
2001
Accepted March 2002

Emerald

International Journal of Numerical
Methods for Heat & Fluid Flow,
Vol. 12 No. 5, 2002, pp. 560-584.
© MCB UP Limited, 0961-5539
DOI 10.1108/09615530210434296

Effect of outlet positions and
various turbulence models on
mixing in a single and multi

strand tundish

Pradeep K. Jha and Sukanta K. Dash

Department of Mechanical Engineering, Indian Institute of Technology,
Kharagpur, India

Keywords Turbulence, Model, Containers, Flow

Abstract The Navier-Stokes equation and the species continuity equation have been solved
numerically in a boundary fitted coordinate system comprising the geometry of a large scale
ndustrial size tundish. The solution of the species continuity equation predicts the time evolution of
the concentration of a tracer at the outlet of a single strand bare tundish. The numerical prediction
of the tracer concentration has been made with three different turbulence models, (a standard k-,
a k-e RNG and a Low Re number Lam-Bremhorst model) which favorably compares with that of
the experimental observation for a single strand bare tundish. It has been found that the overall
comparison of k-e model with that of the experiment is better than the other two turbulence models
as far as gross quantities like mean residence time and ratio of mixed to dead volume are
concerned. However, it has been found that the imitial transient development of the tracer
concentration is best predicted by the Lam-Bremhorst model and then by the RNG model. The k-&
model predicts the tracer concentration much better than the other two models after the initial
transience (t > 40percent of mean residence time) and the RNG model lies in between the k-e and
the Lam-Bremhorst one. The numerical study has been extended to a mulli strand tundish (having
6 outlets) where the effect of outlet positions on the ratio of mix to dead volume has been studied
with the help of the above three turbulence models. It has been found that all the three turbulence
models show a peak value for the ratio of mix to dead volume (a mixing parameter) when the
outlets are placed 200 mmm away from the wall (position-2) thus signifying an optimum location for
the outlets to get highest mixing in a given multi strand tundish.

Nomenclature 4

C = Concentration of tracer t = Time .

Cav, = Average Concentration te = Actual mean residence
of the tracer at outlet 7, time of fluid in the vessel,
@=1,2,3) Equation (7)

k = Turbulent kinetic energy u = Mean velocity .

b = Pressure 14 = Volume of the tundish
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Foundation for donating him a high end PC on which the present computations were carried out,
along with the preparation of the manuscript.



w = fluctuating velocity of w T = Theoretical mean residence time,
component of mean velocity Equation (6)
x = Coordinate for measure of 10 = Either k or &
distance
p = Density of the fluid
" = Co-efficient of viscosity Suffix
v = Kinematic viscosity 5,7,k = Three Cartesian coordinate
Uty = Average turbulent stress directions x, y and z
€ = Rate of dissipation of turbulent d = Dead volume
Kkinetic energy m = Mixed volume
o = Turbulent Schmidt number P = Plug volume
Introduction

The standard high Reynolds number %-& turbulence model has been widely
used in industrial applications to predict the overall performance of a device.
The model has been proved to be very robust and economical from the view
point of computer time because of the use of standard wall functions. However,
it has been observed that in recirculating flow, the prediction of near wall
quantity using the k-& model does not compare very well with other low
Reynolds number models. So for accurate prediction of overall quantity (of
mixing, mean residence time, mix volume and dead volume) in a device,
modified forms of the standard k-e model have been developed in the last
decade. However, the use of such modified %-& models has not been made very
extensively for industrial cases excepting its validation with simple
experiments. It has been the main motivation of the present work to use the
standard %-e model of Launder and Spalding (1972) along with its two
modifications, RNG (Yahkot and Orszag 1992) and Lam and Bremhorst (1981)
to predict the mixing in a single and multi strand (multi exit) tundish which is a
reasonably complex shaped device (when fitted with baffles, advanced pouring
box and shroud) and plays a very important role in the steel industries for
casting quality steel. The tundish is the last device in the sequential operation
of steelmaking where final controls can be made to improve the quality of steel
and decide on its final chemistry. Hence, fluid flow and mixing in a tundish
have been studied by many authors, both numerically and experimentally
(Debroy and Sychterz, 1985; Tacke and Ludwig, 1987; Yeh et al., 1992; Szekely
et al, 1987; Xintian et al, 1992; He and Sahai, 1987; Madias et al, 1999).
However, all the mathematical models of the past have used the standard k-
model to solve the velocity field in the tundish and predict tracer concentration
henceforth. The effects of various turbulence models on mixing have not been
reported or compared with experimental measurements made in a tundish.
Moreover, the effect of outlet positions on mixing, for a multi strand tundish
have not been reported by using various turbulence models. Jha et al (2001)
have reported the effect of outlet positions on mixing by using the standard %-&
model and the present work is an extension of their work where various
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turbulence models are tried along with different outlet positions to examine
their effect on mixing.

Physical description of the problem

The geometry of the multi strand tundish is shown in Figure 1a along with the
three outlets. Half of the tundish is shown because of the symmetry about the
inlet plane. The depth of the tundish and the bottom pad are 572mm and
280 mm respectively with the size of the inlet as 25 mm X 50 mm and all other
dimensions are shown in a plan view in Figure 2, which completes the detail
geometrical description of the industrial size tundish taken for the
mathematical simulation. It is to be noted that the outlets (15 mm X 15 mm)
are drilled through the bottom pad at the positions shown and they have a
length of 280 mm the same as the thickness of the bottom pad. The positions of
the outlets are measured from the bottom wall and the exact locations of the
outlets are shown in Figure 2. At position-1 the outlets are placed 50 mm away
from the wall while at position-3 the outlets are 300 mm away from the wall.
Mixing in the tundish is studied by injecting a dye through the inlet stream for
a very short time and then computing the mass concentration of the dye in the
entire tundish as a function of time. The intention is to compute the ratio of
mixed to dead volume and the mean residence time in the tundish by using
various turbulence models, which are regarded as the main parameters for
deciding the effective utilization of the tundish volume and hence mixing in the
tundish. Also the response of the dye at all the outlets is monitored which in
turn helps to compute the mixed and dead volume as well as the mean
residence time (Jha et al., 2001; Szekely and Themelis, 1971; Levenspiel, 1972).
The objective is to find out a suitable location of the outlets, which can induce
the highest possible mixing in the tundish and to study the effect of the outlet
positions by using different turbulence models. Before proceeding to compute
the above, a detail computation on a single strand (exit) tundish is done (Figure
1c) with all the three turbulence models, which have been compared with the
experimental measurement of Singh and Koria (1993). Experimental
measurements for a multi exit tundish have not been found so far in literature
for which reason comparisons could not be made with a multi exit tundish.

Mathematical formulation and assumptions

The flow field in the tundish is computed by solving the mass and momentum
conservation equations in a boundary fitted coordinate system along with a set
of realistic boundary conditions. The tundish boundary does not conform to a
regular Cartesian system, because it is an inclined wall delta shape tundish, so
the use of BFC was made to solve all the conservation equations. The species
continuity equation is solved in a temporal manner to capture the local
variation of the concentration of the dye in the tundish. The free surface of the
liquid in the tundish was considered to be flat and the slag depth was
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(Continued)

considered to be insignificant. With these two assumptions the flow field was
solved with the help of the following equations (in tensorial form) with three

& Lam Bremhorst). The effect of

natural convection is ignored in the tundish because the ratio, Gr/Re?

turbulence models (k-g, k-e-RNG and Low Re %

where AT, the driving force for natural

convection is the temperature difference between the liquid steel at the top free
surface of the tundish and the bulk temperature of the liquid, which is much

0)

0.044 AT (Lopez-Ramirez et al., 200

less than unity for all the cases that are computed here.

Governing equations

Continuity
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Figure 1.
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Constants (k- model)

C; =144, Co* = Cy =192, o.=1.0
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n=Sk/e, S = /25;S; = modulus of the mean rate-of-strain tensor
. 1/0U; oU fi
Sl] N é <ax]‘ + axl->

Ci=142, Cy=168, (3=438, (C,=0.012, C,=0.08

0.=10, 0,=10, 0.=13, fi=fo=f,=1

Lam-Bremhorst model

_ 20.5
fM — [1 _ 6( 0.0165 R&;)]Z (1 + R_et>’ fl =14+ (005/](’“)3’
Y 2
fo=1.— exp(—Re?), Re, = \/Ei o Re, =%

Y, = Distance to the nearest wall

Ci=144, C*=C,=192, o.=10,

o =10, 0,=13, C,=0.09

Computation of mixed and dead volume (Jha et al., 2001; Szekely
and Themelis, 1971; Levenspiel, 1972)

Theoretical residence time 7= Volume of tundish/(Volumetric flow rate)

©)

. . avli .
Actual residence time ¢, = ZZCC it {=1,2,3 (for the three outlets)
av;

()

In Equation (7) the integration is carried over a time span of 27 with an equal
interval of time step.

Average break through time, #, = First appearance of tracer at the exits

(time to be averaged for multi exits)
)

In case of a multi strand tundish, the value of #, will vary from one outlet to the
other. The tracer will appear suddenly at the outlet, which is placed nearest to



the inlet. So the value of £, will be very small for this outlet where as for other
outlets ¢, will have a higher value. In order to model the break through time for
the entire tundish, the individual values of #, for all the outlets are added and an
average value of #, is taken to compute the plug volume. The dead volume is
computed from Equation (9) after computing the theoretical and actual mean
residence time from Equation (6) and (7) respectively. The mixed volume is
computed from Equation (11) after the dead and plug volumes are computed.

Fraction of dead volume, Vy4/V =1-1¢/7 €)
Fraction of plug volume, V,/V =t,/t 10)
Fraction of mixed volume, Vy/V =1-V,/V —V4/V (11)

Boundary conditions

Boundary conditions can be well visualized with reference to Figure 1a, ¢ The
symmetry plane is given a symmetry boundary condition, which implies a zero
gradient condition for all variables normal to that plane. The walls were set to a
no slip condition and the turbulent quantities were set from a log law wall
function for the %-& and k-& -RNG models. The following “logarithmic law of the
wall” (Ferziger and Peric, 1999) was utilized to compute the value of k(k,) and
&(gp) at the first cell in contact with the wall by considering the production and
dissipation of turbulent quantities to be in local equilibrium near the wall.

pupky*Cl/* 1 2k *Cl/*

= —In(Ez"), where zT = , E=86 and k=041
K

Ty 14

3/4.3/2
— Cu kp

&
p KZp

The same wall function is used in the k- -RNG model for the computation of
the near wall turbulent quantities. It can be noticed from the above equation
that the first node distance from the wall, z, influences the near wall turbulent
quantities. The influence of z, on mixing parameters (V,,,/V, V,,/Vand V4/V) is
studied in the present computation in order to arrive at a suitable grid
distribution near the wall which can predict more accurate results for mixing.

For the Lam-Bremhorst model £ = 0 and a normal gradient of  to the wall
was set to 0. At the inlet, the velocity of the incoming jet was set to a prescribed
value of 1.4 m/s (1.61 ton/min of liquid steel) with a turbulent intensity of 2 per

cent. The intensity of turbulence is defined here to be I = (\/ W/ Winlet), fTrom
which the value of % at the inlet can be prescribed as & = 0.5 X winet)®. The

value of & at the inlet is computed from the relation &;ye = (Ci/ 2 /0.1H),

inlet

where H is the hydraulic radius of the inlet pipe (Launder and Spalding, 1972).
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The top surface of the tundish was taken to be a free surface where a zero
shear stress condition was applied according to references (Tacke and Ludwig,
1987; Szekely et al., 1987; Illegbusi and Szekely, 1989). The bottom of the
tundish was treated like a wall where no slip conditions were used for the
velocity. At the outlets a fixed pressure of 0 Pa (relative to the ambient) was
applied. The wall of the tundish was considered to be impervious to the dye, so
a zero gradient condition for the dye was used on the walls. At the outlet and at
the free surface also zero gradient conditions for the dye were used (Illegbusi
and Szekely, 1989; Illegbusi and Szekely, 1988). At the inlet the concentration of
the dye was kept from 1 to 5 seconds after which the concentration was kept at
zero. 5 seconds is normally very short compared to the mean residence time of
the tundish so the influx of the dye during its travel is not likely to change the
local velocity field as the mass influx of the dye is also very small (Szekely and
Themelis, 1971).

Method of solution

The set of partial differential Equations (1)—(5) was solved with the help of the
above boundary conditions numerically in a finite volume technique using the
educational version of the CFD software Phoenics. The partial differential
equations were integrated over a control volume to find out the fluxes (of mass
and momentum as well as that of the dye) through all the faces, and the flux
balance is made over all the control volumes, which yield a set of linear
algebraic equations. The set of algebraic equations is solved by the tridiagonal
matrix (TDM) method for momentum and by a whole field solver, taking one
from the family of conjugate gradients for the pressure correction equation.
The species continuity equation is solved at each and every time step using the
TDM matrix method once the steady state solution for the momentum
equations is obtained. The solutions are said to have converged when the whole
field normalized residuals for each of the velocity components and mass fall
below unity. A false time step relaxation of 0.5 was used for all the variables for
faster convergence. Control volumes (CV) of 66 X 27 X 30 (X XY X Z) were
used for the computation of the single strand bare tundish for the k- and RNG
models. By changing the control volumes to 76 X 33 X 35, it was observed that
the changes in the mixed and dead volumes were less than 0.2 per cent. For the
Lam-Bremhorst model control volumes of 73 X 35 X 33 (X X Y X Z) were used
which could yield an z+ value of nearly 1 or somewhere less than 1 near the
tundish wall. Increasing the CVs by another 10 in all directions did not improve
the mixed volume and the mean residence time, even by 0.1 per cent. A typical
run for a k-e model takes about 14 hours for the solution of the velocity field
and 14 hours for the solution of the concentration field, whereas the Lam-
Bremhorst model takes 40 hours and 22 hours for the respective solutions of the
velocity and concentration field. From the temporal variation of concentration
the actual mean residence time and all other times was found out by simple



integration (Equation (7)) after which the ratio of mixed to dead volume could
be found out. For the computation, the density of liquid steel was taken to be
7100 kg/m® all through the volume and the kinematic viscosity (Mazumdar and
Guthrie, 1999) to be 0.913 x 105 m?/s.

Results and discussions

The flow field in the six strand (multi exit) tundish was obtained by solving the
Navier Stokes equations numerically and then the tracer dispersion was
computed by injecting some dye into the inlet. From the tracer dispersion curve
the mixed volume and the dead volume were computed as per Equations (9)—
(11). The analysis of mixing was done with respect to the ratio of mixed to dead
volume for different geometrical positions of the outlet by using three different
turbulence models. The mixed and dead volumes are direct indices of mixing in
a tundish. If the mixed volume is large that means more of the tundish volume
is utilized in mixing the fluid. In a similar way it can be said that if the dead
volume is low then most of the volume of the tundish is utilized by the fluid for
mixing. So a ratio of mix to dead volume (Singh and Koria, 1995) and the mean
residence time are better parameters to describe the mixing in a tundish as a
function of other geometrical parameters. In the present study the effect of
outlet positions on mixing has been carried out. We will discuss the temporal
variation of tracer concentration, then the ratio of mixed to dead volume
(V! V) and the mean residence time as a function of outlet positions.

Validation with experiment
Singh and Koria (1993) have done the experiment for a single inlet- single outlet
tundish in which they have measured the tracer concentration with time at the
outlet. The geometry of their tundish is shown in Figure 1lc and the
computational cells used in the present computation are shown in Figure 1d. In
this experiment the bath height was kept at 260 mm and accordingly the same
height was used for the computation where the free surface boundary condition
was applied. Figure 3a shows the temporal variation of the tracer concentration
(non-dimensional) with non-dimensional time and its comparison of three
turbulence models with the one of the experiment. It can be seen from the figure
that the tracer concentration has two peaks in the experiment (one at ¢ = 0.15
and the other at f = 0.42) and all the three turbulence models are able to predict
both peaks but they have their own delays in time while predicting them.
When the tracer is first added at the inlet it moves with the flow field
towards the outlet due to the steady velocity field present in the tundish. It
takes little time to reach the outlet and that can be seen clearly in Figure 3a
when the concentration just starts to rise from a value of zero. The
concentration at the outlet then increases with time due to plug flow present in
the tundish. A sharp increase in the tracer concentration shows that mixing has
not taken place in the tundish because the tracer that has been added has just
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Figure 3.

(a) Temporal variation of
tracer concentration at
the outlet of a single
strand tundish: a
comparison between
experiment and various
turbulence models. (b)
Temporal variation of
tracer concentration at
the outlet of a single
strand tundish: a
comparison between
experiment and the %-&
turbulence model with
different values of Zp
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found its way to the outlet for which there is a sudden jump in the
concentration at the outlet. If there were mixing then the change in the
concentration at the outlet could be gradual, which is seen to be happening at a
later time (f > 0.5). However after the initial peak, the tracer concentration
falls suddenly and then gradually increases to another peak after which it
slowly decreases with time. This happens because after the sudden release of
tracer material at the outlet there is no tracer present around the outlet for
which the concentration suddenly falls. However after a while the fluid brings
in some more tracer which has the chance to be mixed by the rebounded fluid
from the wall for which the concentration again increases and attains a peak
value. This time the tracer concentration does not increase as suddenly as it
does the first time. After the second peak the tracer slowly goes out of the
system for which the concentration slowly falls with time and after about 3
times the mean residence time, the concentration falls to nearly zero. So it can
be found from this experimental observation that mixing has really taken place
after a non-dimensional time of 0.2 from when the rise in tracer concentration
has become gradual as well as its fall.

It can be seen that the initial rise in the tracer concentration is well predicted
by the Lam-Bremhorst model as well as the first peak. Also the k-e RNG model
is capable of predicting the initial rise well, along with the prediction of the first
peak. But the standard high Reynolds number k-& model shows a delay in
predicting the first tracer appearance although it predicts the magnitude of the
first peak value well compared with the other two models. In the k- model, it
has been observed that the value of k£ remains high all through the flow field
compared with the other two models. Hence, the turbulent diffusion remains
high; as a result, mixing becomes high and the tracer appears late at the outlet.
In the RNG model the extra source term in the dissipation equation (4) increases
the rate of dissipation near the wall and causes the turbulent kinetic energy to
remain low for which the turbulent diffusion remains low causing mixing to be
relatively low in comparison with the standard %-e model. The same effect also
comes through the low Reynolds number Lam-Bremhorst model where the
overall value of turbulent kinetic energy in the near vicinity of wall remains
low, causing turbulent diffusion of the tracer concentration to be low. So the
RNG as well as the Lam-Bremhorst model predict the first appearance of tracer
to be quicker than the k- model alone. However, after £ > 0.5 the k- model
predicts a better match in concentration with time compared with the other two
models simply because the k- model produces more turbulent kinetic energy,
which aids diffusional mixing better than the other two models. After a time of
1.5 all the three turbulence models predict the same concentration with time.

It was suspected that the near wall turbulent quantities computed from the
logarithmic wall function could be producing higher values of % for the k-g
turbulence model for which the first appearance of tracer at the outlet is
delayed compared with the experimental observation. So in order to examine
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the effect of the “log law wall function” on mixing, the first node distance from
the bottom wall (z,) was changed according to the suggestion given by
Chakraborty and Sahai (1991). Figure 3b shows the effect of near wall node on
the temporal variation of tracer concentration at the exit of a single strand
tundish (Singh and Koria). The near wall node distance, z, was varied from
439mm (maximum z* =18) to 13mm (maximum z* =40) in the ke
turbulence model but the mean residence time was changed only from
444.51 sec to 445.7 sec respectively. It can be seen from Figure 3b that the first
peak in the concentration curve is predicted little higher when z, is 4.39 mm
and subsequently with the increase of z, to 13 mm the peak decreases. Both the
peaks are predicted very near to the experimental observation when z, has a
value of 8.67 mm (maximum z ™ = 30). But the initial delay in appearance of the
tracer is nearly the same for all the cases of z, studied here. From Table I, a
comparison of the various mixing parameters can be read for different turbulent
models. It can be concluded that the grid distribution, with a near wall node
located at 8.67 mm is more suitable for predicting the experimental observation.

Table I shows a comparison of the bulk properties for the tundish with all
the three turbulence models. It can be seen from the table that the mean
residence time is well predicted by k-& model (all the cases of z, predicts well)
which favorably compares with the experimental value as well as the ratio of
mixed to dead volume of the tundish, V,/V4. The mixed volume ( per cent
volume of the entire tundish) is under-predicted by %-¢ model where as RNG
and Lam-Bremhorst model predict the mixed volume closer to experiment
while in case of dead volume, %-& model predicts closer to experimental value as
compared with the overpredicted value by the RNG and the Lam-Bremhorst
model. It can be concluded from Table I that the k-& model is well capable of
predicting the mean residence time and V., /Vy closer to experimental
observation in a bare tundish although the flow field inside a tundish is highly
recirculating. Although the &-& model does not predict the variation of temporal
concentration well at the beginning, the initial mismatch in concentration with
the experimental observation does not influence the prediction in mean
residence time because the mean residence time is found out by taking the area
moment about the concentration axis. So the initial mismatch does not count
much in the overall integration, whereas the matching with experimental
observation after the initial transience counts much towards predicting the
mean residence time. Although the Lam-Bremhorst model predicts the
concentration well at the beginning, it does not do that well towards the later
part, so the prediction in mean residence time suffers a little when compared
with experimental observation.

Effect of outlet positions
The multi strand tundish has 6 outlets at the bottom pad and one inlet. Due to
symmetry in the system only the half of the tundish, which has three outlets, is
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analyzed and their positions can be seen from Figure 2 as well as in all the
figures from 4 to 6. When the outlets are at position-1 they are close to the wall
and when they are at position-3, they are away from the wall. The tracer
concentration through all the outlets (outl, out2 and out3) is plotted in Figure
4(a—c) for the three turbulence models when the outlets are at position-1.
Figures 5(a—c) and 6(a—c) describe the tracer concentration through all the
outlets when they are at position-2 and position-3 respectively for the three
turbulence models.

Figure 4a shows the temporal variation of concentration through all the
three outlets when they are at position-1, (near the wall) by using the &-& model.
Similarly Figure 4b,c show the variation of concentration through all the
outlets at position-1 by utilizing the RNG and the Lam-Bremhorst model
respectively. It can be observed that when the outlets are at position-1, the
concentration through out3, nearest to the inlet attains high peak value very
quickly after the tracer is injected. Concentration peak through out2 and out3
does not rise much as they are away from the inlet point of tracer injection. A
sudden rise in tracer concentration signifies that there is no mixing. The Lam-
Bremhorst model predicts a slightly higher peak in out3 compared with the k-e
and RNG model. When the tracer appears at the outlet out2 and outl, by that
time they have got a chance to be mixed with surrounding fluid and moreover
these outlets do not receive the fluid elements straight from the inlet, so the
peak in concentration does not rise to a high value.

When the outlets are shifted to position-2, the peak value in concentration for
out3 falls significantly. For outlets, outl and out2 also the peak values fall in
the Lam-Bremhorst model (Figure 5¢). But the RNG model shows a higher peak
for out2 compared with postion-1. But when the outlets are further shifted to
position-3 (Figure 6a—c) the peak values of concentration in out2 increases
while for out3 it decreases, excepting the prediction by the RNG model (Figure
6b) compared with position-2. It can be seen from Figures 4—6 that all the three
models of turbulence predict similarly the tracer concentration through all the
outlets. It can be observed that outlets placed at position-1 definitely do not
help better mixing while outlets at position-2 or position-3 do make mixing
better. In order to arrive at a better conclusion the bulk flow properties like the
mean residence time and the ratio of mixed to dead volume V,,/Vy, are analyzed
for the tundish by varying the outlet positions.

Variation of V,,/V ; and mean residence time

Figure 7a shows the variation of V,,/V4 when the distance of the outlets from
the wall is changing. When the outlets are too close to the wall, V,,,/V4 has a
small value and as the distance of the outlets increase from the wall, V,,/Vq
increases, attains a peak value and then decreases. When the outlets are
200mm away from the wall V,/Vy attains the highest value signifying best
possible mixing in the tundish. When the outlets move still further away from
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Figure 4.

(a) Variation of
concentration with time
for the outlets at
position-1 (k- model). (b)
Variation of
concentration with time
for the outlets at
position-1 (RNG model).
(c) Variation of
concentration with time
for the outlets at
position-1 (Lam-
Bremhorst model)
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Figure 5.

(a) Variation of
concentration with time
for the outlets at
position-2 (k- model). (b)
Variation of
concentration with time
for the outlets at
position-2 (RNG model).
(c) Variation of
concentration with time
for the outlets at
position-2 (Lam-
Bremhorst model)
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Figure 6.

(a) Variation of
concentration with time
for the outlets at
position-3 (k- model). (b)
Variation of
concentration with time
for the outlets at
position-3 (RNG model).
(c) Variation of
concentration with time
for the outlets at
position-3 (Lam-
Bremhorst model)
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Figure 7.

(a) Variation of the ratio
of mix to dead volume as
a function of the distance
of outlets from the wall
for different turbulence
models. (b) Variation of
mean residence time as a
function of the distance
of outlets from the wall
for different turbulence
models
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the wall, V,,/Vy decreases because the tracer before dispersing any further
finds its way directly to the outlet for the discharge. Thus it can be said that
there exists an optimum location for the outlets where best possible mixing can
be achieved. All the three turbulence models predict outlet position-2 as the
optimum location. The variation of mean residence time with outlet positions in
the tundish is plotted in Figure 7b. The variation of mean residence time is also
a direct indication of mixing in a tundish. From the figure it is seen that outlet
position-2 has the highest mean residence time, hence mixing in the tundish can
be better if the outlets are placed at this position.

It can be seen that the RNG and the k- model almost predict V,,/Vy very
close to each other (with a maximum of 6 per cent deviation from k-& model)
while the Lam-Bremhorst model predicts with a maximum difference of 12 per
cent from the k- model. However all three models show the same trend in
predicting V,,/V4 and the mean residence time (Figure 7b). In the prediction of
mean residence time all the three turbulence models are close to each other
with, a maximum relative difference of 5 per cent existing between the RNG
and the Lam-Bremhorst model.

Analysis of velocity fields

From the analysis of V,,,/V4 and mean residence time in Figure 7 it can be said
that outlets at position-2 induce better mixing in the tundish. It can be further
demonstrated by taking a vertical cross sectional plane through the outlets and
by plotting the velocity vector on such a plane. Such velocity vectors can be
seen in Figures 8—10. Figure 8a—c show the velocity vector plotted on vertical
cross sectional planes, when the outlets are passing through position-1, 2 and 3
respectively, by using the k-e model while similar plots can be seen in Figure 9
and 10 where the RNG and Lam-Bremhorst models are used. It can be seen
from Figure 8b that the recirculation zone is much larger when the outlets are
at position-2. Recirculation is weaker at positions-1 and 3 compared with
outlets placed at position-2. Similar pictures are obtained from the use of the
RNG model. The RNG model also shows that recirculation is much stronger in
the tundish when the outlets are at position-2. From the use of the Lam-
Bremhorst model it can be seen that recirculation is weaker at all the positions
of the outlets. This is the main reason why this model predicts a higher peak in
tracer concentration when the outlets are at position-1. Due to lack of
recirculation, mixing suffers in the tundish and the tracer does not mix in the
bulk of the fluid just after its injection and that is why it suddenly appears at
the outlet, causing the concentration to rise very high. It is believed that the
present Lam-Bremhorst model dampens the turbulent kinetic energy too much
which causes the flow to laminarize, and suppresses turbulent mixing in this
particular arrangement of tundish geometry. When the outlets are at position-2
there is a formation of recirculation zone near the symmetry plane and the first
outlet, out3. The recirculation persists when the outlets are moved to position-3
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Figure 9.
(a) Velocity field through
a vertical cross sectional
plane passing through all
the outlets at position-1
(RNG model). (b) Velocity
field through a vertical
cross sectional plane
passing through all the
outlets at position-2
(RNG model). (c) Velocity
field through a vertical
cross sectional plane
passing through all the
outlets at positio-3 (RNG
model)
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and becomes even stronger as it appears from Figure 10c. It should be observed
from the k- (Figure 8) and RNG (Figure 9) model that they produce almost
similar flow fields when the outlets are at position-1 and 2. But when the outlets
are at position-3 the velocity field varies a lot between the two models. The
structure of the flow field is almost the same for outlet positions-1 and 2 when
the Lam-Bremhorst model is used, but the magnitude of velocity is little less
compared to the k- and RNG model. When the outlets are at position-3, the
structure of the flow field predicted by all three models becomes greatly
different. When the outlets are at position-3 it is much closer to the inlet. So the
velocity field is much stronger there. The inlet jet hits the bottom pad and
spreads along the bottom pad towards the outlets, causing a strong shear flow.
The strong shear is dampened more by the Lam-Bremhorst and the RNG model
compared with the k- model. As a result the average turbulent kinetic energy
remains higher for the k- model compared with the other two turbulence
models. A high value of % causes more momentum mixing due to higher
diffusion whereas the Lam-Bremhorst model tries to laminarize the flow near
the bottom pad. The slow growth of velocity profile near the bottom pad can be
well visualized in Figure 10a—c between the outlets outl and out2, whereas
uniform flow field can be seen for the k- model in Figure 8c in the same
location. Such dissimilarities in the flow field predicted by all the three
turbulence models tend to deviate the overall prediction of mean residence time
and V,,/Vq4 from each other.

Conclusions

The mass, momentum and the species conservation equations are solved
numerically in a boundary fitted coordinate system comprising a typical
industrial size tundish having a through put of 1.61 ton/min. The ratio of the
mix to dead volume and the mean residence time are analyzed from the solution
of the species conservation equation.

It 1s found that there exists an optimum location of the outlets where the
ratio of mixed to dead volume and the mean residence time is the highest. All
the three turbulence models (k-g, k- RNG and k-& Lam-Bremhorst) predict
outlet position-2 as the optimum location.

All the three turbulence models predict the gross flow properties like mean
residence time and ratio of mixed to dead volume fairly closely to the accuracy
of the experimental measurements while the standard %-& model predicts the
closest value. All the turbulence models (in this study) are able to predict the
two peaks in the temporal variation of tracer concentration for a single exit
tundish, while the Low Reynolds number Lam-Bremhorst model predicts the
initial transience much better than the other two models. It is suggested that %-&
model can be used for tundish flow to predict overall flow properties because it
takes less than half the time compared with the Lam-Bremhorst model.
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